Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.29.502072

ABSTRACT

Omicron has demonstrated a competitive advantage over Delta in vaccinated people. To understand this, we designed a transmission chain experiment using naive, intranasally (IN) or intramuscularly (IM) vaccinated, and previously infected (PI) hamsters. Vaccination and previous infection protected animals from disease and virus replication after Delta and Omicron dual challenge. A gradient in transmission blockage was observed: IM vaccination displayed moderate transmission blockage potential over three airborne chains (approx. 70%), whereas, IN vaccination and PI blocked airborne transmission in >90%. In naive hamsters, Delta completely outcompeted Omicron within and between hosts after dual infection in onward transmission. Although Delta also outcompeted Omicron in the vaccinated and PI transmission chains, an increase in Omicron competitiveness was observed in these groups. This correlated with the increase in the strength of the humoral response against Delta, with the strongest response seen in PI animals. These data highlight the continuous need to assess the emergence and spread of novel variants in populations with pre-existing immunity and address the additional evolutionary pressure this may exert on the virus.


Subject(s)
Encephalomyelitis, Acute Disseminated
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.28.21264207

ABSTRACT

Duration of protection from SARS-CoV-2 infection in people with HIV (PWH) following vaccination is unclear. In a sub-study of the phase 2/3 the COV002 trial (NCT04400838), 54 HIV positive male participants on antiretroviral therapy (undetectable viral loads, CD4+ T cells >350 cells/ul) received two doses of ChAdOx1 nCoV-19 (AZD1222) 4-6 weeks apart and were followed for 6 months. Responses to vaccination were determined by serology (IgG ELISA and MesoScale Discovery (MSD)), neutralisation, ACE-2 inhibition, gamma interferon ELISpot, activation-induced marker (AIM) assay and T cell proliferation. We show that 6 months after vaccination the majority of measurable immune responses were greater than pre-vaccination baseline, but with evidence of a decline in both humoral and cell mediated immunity. There was, however, no significant difference compared to a cohort of HIV-uninfected individuals vaccinated with the same regimen. Responses to the variants of concern were detectable, although were lower than wild type. Pre-existing cross-reactive T cell responses to SARS-CoV-2 spike were associated with greater post-vaccine immunity and correlated with prior exposure to beta coronaviruses. These data support the on-going policy to vaccinate PWH against SARS-CoV-2, and underpin the need for long-term monitoring of responses after vaccination.


Subject(s)
HIV Infections , Hallucinations , COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.21.21258528

ABSTRACT

Background: Although 6 COVID-19 vaccines have been approved by the World Health Organisation as of 7th June 2021, global supply remains limited. An understanding of the immune response associated with protection could facilitate rapid licensure of new vaccines. Methods: Data from a randomised efficacy trial of ChAdOx1 nCoV-19 (AZD1222) vaccine in the UK was analysed to determine the antibody levels associated with protection against SARS-CoV-2. Anti-spike and anti-RBD IgG by multiplex immunoassay, pseudovirus and live neutralizing antibody at 28 days after the second dose were measured in infected and non-infected vaccine recipients. Weighted generalised additive models for binary data were applied to outcome. Cubic spline smoothed log antibody levels, and baseline risk of exposure were the predictor variables with weights applied to account for selection bias in sample processing. Results: Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. Vaccine efficacy of 80% against primary symptomatic COVID-19 was achieved with antibody level of 40923 (95% CI: 16748, 125017) and 63383 (95% CI: 16903, not computed (NC)) for anti-spike and anti-RBD, and 185 (95% CI: NC, NC) and 247 (95% CI: 101, NC) for pseudo- and live-neutralisation assays respectively. Antibody responses did not correlate with overall protection against asymptomatic infection. Conclusions: Correlates of protection can be used to bridge to new populations using validated assays. The data can be used to extrapolate efficacy estimates for new vaccines where large efficacy trials cannot be conducted. More work is needed to assess correlates for emerging variants.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.08.447308

ABSTRACT

There is an ongoing global effort, to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations that negatively impact the role of neutralising antibodies. In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine against the variant of concern B.1.351 (AZD2816). We demonstrate AZD2816 is immunogenic after a single dose and when used as a booster dose in animals primed with original vaccine AZD1222, we see no evidence of original antigenic sin but high titre antibodies against a number of variant spike proteins. In addition, neutralisation titres against B.1.351 (Beta), B.1.617.1 (Kappa) and B.1.617.2 (Delta), are induced in these boost regimens. These data support the ongoing clinical development and testing of this new variant vaccine.

7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.29.428535

ABSTRACT

The SARS-CoV-2 variant carrying the Spike protein mutation G614 was first detected in late January 2020 and within a few months became the dominant form globally. In the months that followed, many studies, both in vitro and in animal models, showed that variants carrying this mutation were more infectious and more readily transmitted than the ancestral Wuhan form. Here we investigate why a recently published study by van Dorp et al. failed to detect such higher transmissibility of the G614 variant using homoplasy-based methods. We show that both low diversity and recombination confound the methods utilized by van Dorp et al. and significantly decrease their sensitivity. Furthermore, though they claim no evidence of recombination in their dataset, we and several other studies identify a subset of the sequences as recombinants, possibly enough to affect their statistic adversely.

8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.29.428808

ABSTRACT

Covid-19 is the most devastating pandemic of the past 100 years. A zoonotic transfer presumably at a wildlife market introduced the causative virus, SARS-CoV-2 (sarbecovirus; beta-coronavirus), to humans in late 2019. Meanwhile, the mechanistic details of the infection process have been largely elucidated, and structural models explain binding of the virial spike to the human cell surface receptor ACE2. Yet, the evolutionary trajectory that gave rise to this pathogen is poorly understood. Here we scan SARS-CoV-2 protein sequences in-silico for innovations along the evolutionary lineage starting with the last common ancestor of coronaviruses. Substantial differences in the sets of proteins encoded by SARS-CoV-2 and viruses outside sarbecovirus, and in their domain architectures, indicate divergent functional demands. By contrast, sarbecoviruses themselves are almost fully conserved at these levels of resolution. However, profiling spike evolution on the sub-domain level using predicted linear epitopes reveals that this protein was gradually reshaped within sarbecovirus. The only epitope that is private to SARS-CoV-2 overlaps with the furin cleavage site. This lends phylogenetic support to the hypothesis that a change in strategy facilitated the zoonotic transfer of SARS-CoV-2 and its success as a human pathogen. Upon furin cleavage, spike switches from a "stealth mode" where immunodominant ACE2 binding epitopes are largely hidden to an "attack mode" where these epitopes are exposed. The resulting reinforcement of ACE2 binding extends the window of opportunity for cell entry. SARS-CoV-2 variants fine-tuning this mode switch will be particularly threatening as they optimize immune evasion.


Subject(s)
COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.29.428847

ABSTRACT

In the context of searching for COVID-19 related scientific literature, we present an information retrieval methodology for effectively finding relevant publications for different information needs. We discuss different components of our architecture consisting of traditional information retrieval models, as well as modern neural natural language processing algorithms. We present recipes to better adapt these components to the case of an infodemic, where, from one hand, the number of publications has an exponential growth and, from the other hand, the topics of interest evolve as the pandemic progresses. The methodology was evaluated in the TREC-COVID challenge, achieving competitive results with top ranking teams participating in the competition. In retrospect to this challenge, we provide additional insights with further useful impacts.


Subject(s)
COVID-19
10.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.28.428665

ABSTRACT

Several vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two dose heterologous vaccination regimens than single dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1+ CD4 T cells which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies.

11.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.28.428743

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a causative agent of COVID-19 pandemic, enters host cells via the interaction of its Receptor-Binding Domain (RBD) of Spike protein with host Angiotensin-Converting Enzyme 2 (ACE2). Therefore, RBD is a promising vaccine target to induce protective immunity against SARS-CoV-2 infection. In this study, we report the development of RBD protein-based vaccine candidate against SARS-CoV-2 using self-assembling H. pylori-bullfrog ferritin nanoparticles as an antigen delivery. RBD-ferritin protein purified from mammalian cells efficiently assembled into 24-mer nanoparticles. 16-20 months-old ferrets were vaccinated with RBD-ferritin nanoparticles (RBD-nanoparticles) by intramuscular or intranasal inoculation. All vaccinated ferrets with RBD-nanoparticles produced potent neutralizing antibodies against SARS-CoV-2. Strikingly, vaccinated ferrets demonstrated efficient protection from SARS-CoV-2 challenge, showing no fever, body weight loss and clinical symptoms. Furthermore, vaccinated ferrets showed rapid clearance of infectious viruses in nasal washes and lungs as well as viral RNA in respiratory organs. This study demonstrates the Spike RBD-nanoparticle as an effective protein vaccine candidate against SARS-CoV-2.


Subject(s)
Fever , Severe Acute Respiratory Syndrome , Weight Loss , COVID-19
12.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.15.426908

ABSTRACT

Summary: Recently, a short, interferon-inducible isoform of Angiotensin-Converting Enzyme 2 (ACE2), dACE2 was identified. ACE2 is a SARS-Cov-2 receptor and changes in its renal expression have been linked to several human nephropathies. These changes were never analyzed in context of dACE2, as its expression was not investigated in the kidney. We used Human Primary Proximal Tubule (HPPT) cells to show genome-wide gene expression patterns after cytokine stimulation, with emphasis on the ACE2/dACE2 locus. Putative regulatory elements controlling dACE2 expression were identified using ChIP-seq and RNA-seq. qRT-PCR differentiating between ACE2 and dACE2 revealed 300- and 600-fold upregulation of dACE2 by IFN and IFN{beta}, respectively, while full length ACE2 expression was almost unchanged. JAK inhibitor ruxolitinib ablated STAT1 and dACE2 expression after interferon treatment. Finally, with RNA-seq, we identified a set of genes, largely immune-related, induced by cytokine treatment. These gene expression profiles provide new insights into cytokine response of proximal tubule cells.


Subject(s)
Kidney Diseases
13.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.19.427256

ABSTRACT

Solid-state transistor sensors that can detect biomolecules in real time are highly attractive for emerging bioanalytical applications. However, combining cost-effective manufacturing with high sensitivity, specificity and fast sensing response, remains challenging. Here we develop low-temperature solution-processed In2O3/ZnO heterojunction transistors featuring a geometrically engineered tri-channel architecture for rapid real-time detection of different biomolecules. The sensor combines a high electron mobility channel, attributed to the quasi-two-dimensional electron gas (q2DEG) at the buried In2O3/ZnO heterointerface, in close proximity to a sensing surface featuring tethered analyte receptors. The unusual tri-channel design enables strong coupling between the buried q2DEG and the minute electronic perturbations occurring during receptor-analyte interactions allowing for robust, real-time detection of biomolecules down to attomolar (aM) concentrations. By functionalizing the tri-channel surface with SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) antibody receptors, we demonstrate real-time detection of the SARS-CoV-2 spike S1 protein down to attomolar concentrations in under two minutes.


Subject(s)
Coronavirus Infections
14.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.15.426463

ABSTRACT

Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirms the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

15.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.17.427000

ABSTRACT

SARS-CoV-2 has emerged as a major threat to global public health, resulting in global societal and economic disruptions. Here, we investigate the intramolecular and intermolecular RNA interactions of wildtype (WT) and a mutant ({Delta}382) SARS-CoV-2 virus in cells using high throughput structure probing on Illumina and Nanopore platforms. We identified twelve potentially functional structural elements within the SARS-CoV-2 genome, observed that identical sequences can fold into divergent structures on different subgenomic RNAs, and that WT and {Delta}382 virus genomes can fold differently. Proximity ligation sequencing experiments identified hundreds of intramolecular and intermolecular pair-wise interactions within the virus genome and between virus and host RNAs. SARS-CoV-2 binds strongly to mitochondrial and small nucleolar RNAs and is extensively 2'-O-methylated. 2'-O-methylation sites in the virus genome are enriched in the untranslated regions and are associated with increased pair-wise interactions. SARS-CoV-2 infection results in a global decrease of 2'-O-methylation sites on host mRNAs, suggesting that binding to snoRNAs could be a pro-viral mechanism to sequester methylation machinery from host RNAs towards the virus genome. Collectively, these studies deepen our understanding of the molecular basis of SARS-CoV-2 pathogenicity, cellular factors important during infection and provide a platform for targeted therapy.


Subject(s)
COVID-19
16.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.09.426058

ABSTRACT

Intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 protected rhesus macaques against pneumonia but did not reduce shedding of SARS-CoV-2. Here we investigate whether intranasally administered ChAdOx1 nCoV-19 reduces shedding, using a SARS-CoV-2 virus with the D614G mutation in the spike protein. Viral load in swabs obtained from intranasally vaccinated hamsters was significantly decreased compared to controls and no viral RNA or infectious virus was found in lung tissue, both in a direct challenge and a transmission model. Intranasal vaccination of rhesus macaques resulted in reduced shedding and a reduction in viral load in bronchoalveolar lavage and lower respiratory tract tissue. In conclusion, intranasal vaccination reduced shedding in two different SARS-CoV-2 animal models, justifying further investigation as a potential vaccination route for COVID-19 vaccines.


Subject(s)
Pneumonia , COVID-19
17.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.10.426143

ABSTRACT

Motivation: The SARS-CoV-2 variants emerging from South Africa (501.V2) and the UK (B.1.1.7) necessitate rapid assessment of the effects of the corresponding amino acid substitutions in the spike (S) receptor-binding domain (RBD) of the variants on the interactions with the human ACE2 receptor and monoclonal antibodies (mAbs) reported earlier to neutralize the spike. Results: Molecular modeling and simulations reveal that N501Y, shared by both variants, increases ACE2 binding affinity, and may impact the collective dynamics of the ACE2-RBD complex, occupying a central hinge site that modulates the overall dynamics of the complex. In contrast, the substitutions K417N and E484K in the South African variant 501.V2 would reduce the ACE2-binding affinity by abolishing two interfacial salt bridges that facilitate RBD binding to ACE2, K417(S)-D30(ACE2) and E484 (S)-K31(ACE2). These two mutations may thus be more than compensating the attractive effect induced by N501Y, overall resulting in an ACE2-binding affinity comparable to that of the wildtype RBD. Further analysis of the impact of these mutations on the interactions with mAbs targeting the spike indicate that the substitutions K417N and E484K may also abolish the salt bridges between the spike and selected mAbs, such as REGN10933, BD23, H11_H4, and C105, thus reducing the binding affinity and effectiveness of these mAbs.

18.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.11.426227

ABSTRACT

Spike protein of human coronaviruses has been a vital drug and vaccine target. The multifunctionality of this protein including host receptor binding and apoptosis has been proved in several coronaviruses. It also interacts with other viral proteins such as membrane (M) protein through its C-terminal domain. The specific dibasic motif signal present in cytosolic region at C-terminal of spike protein helps it to localize within the endoplasmic reticulum (ER). However, the structural conformation of cytosolic region is not known in SARS-CoV-2 using which it interacts with other proteins and transporting vesicles. Therefore, we have demonstrated the conformation of cytosolic region and its dynamics through computer simulations up to microsecond timescale using OPLS and CHARMM forcefields. The simulations have revealed the unstructured conformation of cytosolic region (residues 1242-1273). Also, in temperature dependent replica-exchange molecular dynamics simulations it has shown to form secondary structures. We believe that our findings will surely help us understand the structure-function relationship of the spike protein's cytosolic region.

19.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.10.426114

ABSTRACT

The SARS-CoV-2 pandemic has caused a significant number of fatalities and worldwide disruption. To identify drugs to repurpose to treat SARS-CoV-2 infections, we established a screen to measure dimerization of ACE2, the primary receptor for the virus. This screen identified fenofibric acid, the active metabolite of fenofibrate. Fenofibric acid also destabilized the receptor binding domain (RBD) of the viral spike protein and inhibited RBD binding to ACE2 in ELISA and whole cell binding assays. Fenofibrate and fenofibric acid were tested by two independent laboratories measuring infection of cultured Vero cells using two different SARS-CoV-2 isolates. In both settings at drug concentrations which are clinically achievable, fenofibrate and fenofibric acid reduced viral infection by up to 70%. Together with its extensive history of clinical use and its relatively good safety profile, these studies identify fenofibrate as a potential therapeutic agent requiring urgent clinical evaluation to treat SARS-CoV-2 infection.


Subject(s)
COVID-19 , Virus Diseases , Severe Acute Respiratory Syndrome
20.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423746

ABSTRACT

There is an urgent requirement for safe and effective vaccines to prevent novel coronavirus disease (COVID-19) caused by SARS-CoV-2. A concern for the development of new viral vaccines is the potential to induce vaccine-enhanced disease (VED). This was reported in several preclinical studies with both SARS-CoV-1 and MERS vaccines but has not been reported with SARS-CoV-2 vaccines. We have used ferret and rhesus macaques challenged with SARS-CoV-2 to assess the potential for VED in animals vaccinated with formaldehyde-inactivated SARS-CoV-2 (FIV) formulated with Alhydrogel, compared to a negative control vaccine in ferrets or unvaccinated macaques. We showed no evidence of enhanced disease in ferrets or rhesus macaques given FIV except for mild transient enhanced disease seen at seven days post infection in ferrets. This increased lung pathology was observed early in the infection (day 7) but was resolved by day 15. We also demonstrate that formaldehyde treatment of SARS-CoV-2 reduces exposure of the spike receptor binding domain providing a mechanistic explanation for suboptimal immunity.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL